Chapter 4
MODEL DEVELOPMENT 1

Regression analyses

The previous chapter describes a series of experimental programs, each providing some
data and relationships which should be useful in modelling the forces involved in
penetrating a ridge keel. In this chapter results from the experiments in Chapter 3 have
been combined with data from the literature for regression analyses. The grouped data
sets include those for ridge keel shape, ice rubble shear strength and structure interaction
forces. Any individual test program tends to involve a choice of a limited set of
parameters which are varied, and often a limited range over which variation occurs.
When diverse programs are studied collectively, general results are obtained, removing
or reducing biases which result from the limitations of any one test procedure. While
collective studies run the risk of oversimplifying some issues they can broaden the
applicability of results and, as the following shows, can be a better guide for future

work.

4.1 First-year ridge keel shape

Though there have not been any new field data presented in this thesis, this section
describes the results of a new regression study of ridge keel shape. The data used are
described in the thesis background as reported in Burden and Timco (1995). Burden and
Timco (1995) catalogued the dimensions of over 112 first-year and 64 multi-year ridges.

The first-year ridges were divided into two groups: those associated with temperate
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climates and those from the arctic. The keel data for temperate first-year ridges were

considered in this study.

Detailed surveys of ridge cross-sections have shown that keel shapes have varying slopes
with both convex and concave curvature. The keel bottom may be pointed and off-centre,
rounded or flat. Naturally, there are no simple geometric forms that perfectly define all
ridges. For analytical modelling, ridges are typically categorized as triangular or
trapezoidal in cross-section because those shapes are easily defined by measured field
data; usually width, depth and sometimes slope angle. Though commonly applied, these
shapes present some analytical difficulties since they possess slope discontinuities.
Discontinuities preclude one from defining the whole keel with a simple, single algebraic
formula, a convenience for computing depth across the entire ridge. For this study the
replacement of the facetted geometric approximations with that of a half-cycle "sine
wave" form has been considered (Figure 4.1). To investigate the quality-of-fit of the

"sine" approximation the data sets presented by Burden and Timco have been reanalysed.

Keel width to depth ratio
A total of 44 ridges had both keel width and depth measurements studied. A regression
analysis was performed to determine the best linear and non-linear relationship between

these measured parameters. The resulting formulas are

W=25H +94 and W = 9.2H" (1)
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where W and H are the keel width and depth in meters. For the linear relation the r*
value, adjusted for degrees of freedom, was 44.8% and the standard deviation of the
somewhat normally distributed residuals was 8.2 m. The power-law fit established
through a natural log transform had a standard deviation of the normally distributed log
residuals of 0.3471 with an adjusted r? value of 38.7%. A linear relationship between the
width and depth, fitted with a zero intercept as in Burden and Timco (1995), resulted in
the relation, W = 3.99H with an r? of 24 %. Figure 4.2 is a scatter plot of the ridge data

with both fitted linear relations and the power law fit.

Keel angle

Both fore and aft keel angles are listed in Burden and Timco (1995). These terms are
understood to be used arbitrarily assigned to differentiate between the two slopes of a
given ridge and are in no way a convention for 'classifying any particular ridge
orientation. The method of measurement is not recorded. For 16 first-year temperate
region ridges the averages of the angles which were measured are 28.8° and 26.3°
respectively, resulting in an overall average of 27.5°. Of the 16, only 8 ridges had width
and depth stated. If these 8 ridges were assumed to be either triangular or "sine” shaped,
the average slope angle for both is found to be 23.5°, a slight underestimate of the
measured average (the average angle for both shapes is computed from the arctan of
ridge depth over half the ridge width). The relation between measured and computed
slope is investigated further in Figure 4.3. Although both shapes have the same average
slope over a half length, the slope of the "sine" shape varied between 0.0 and 33.5° from

tip to toe. This range encompasses the measured values above.
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Keel area
Through digitization, Burden and Timco determined the cross-sectional area of 18
temperate first-year ridges. Only six of these corresponded to ridges for which both
width and depth data were also provided. Width and depth dimensions were estimated
from digitized plots so that another 11 of the 18 ridges could be considered in this study.
The area under a "sine" shaped approximation (2HW/x) over-estimates the measured
areas by 12%. The area under an isosceles triangle of equal proportions underestimates
areas by the same margin (Figure 4.4). When only the six fully-defined ridges are used,
the error for the "sine" approximation diminishes to 7% and that for triangular keels

increases to 14%.

The "sine” keel shape is a more accurate keel cross-sectional area shape approximation
than the isosceles triangle one. When one considers that overstating size results in
overestimated loads, which is safer than underestimating, the new "sine" shape may be
a better choice for design regardless of the improvement. Further, the continuous and
simple form of the "sine" curve may indeed provide easier load modelling by eliminating

slope discontinuities'.

' Brown and Bruce (1995) conducted a finite element investigation of the stress
distribution within a ridge keel during indentation. In that study the stress
patterns/contours below the surface of a triangular keel were shown to be parabolic or
sine-like in shape. This indicated that discontinuities in surface form did not translate to
internal stress discontinuities.




Keel geometric
approximations

Trapezoidal :.14 =| < >
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Figure 4.1 Keel geometry approximations.
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Keel width, W (m)

First-year ridge width vs depth
Data from: Burden and Timco (1995)
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Figure 4.2 Keel width vs depth study.
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First-year ridge slope study
Data from: Burden and Timco (1995)
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Figure 4.3 Keel slope study.
First-year ridge area study
Data from: Burden and Timco (1995)
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4.2 Ice rubble shear strength

In this section experiments investigating the shear strength of submerged ice rubble are
studied. Properties and conditions suspected of influencing shear behaviour are grouped
using dimensional analysis. The derived dimensionless ratios, and the original quantities
are used in a multiple regression study of rubble shear strength. The inter-dependencies
between explanatory variables (independent or control variables) is investigated and the

best-fit formulas defining shear strength are quantified.

4.2.1 Dimensional analysis

Regression analyses produce dimensionally homogeneous equations. When the
dimensions of control variables on both sides of an equation are not similar, the
regression coefficients assume a dimensional form. When developing and classifying
generalized equations for scaling it is desireable that the coefficients remain
dimensionless. To meet this criteria a dimensional analysis is used to group variables into
dimensionless ratios which eliminate all dimensions from the regression analysis. These
terms (ratios) may also be used as a means of systematically collecting and converting
data from various experimental programs while reducing the number of variables to be

investigated.

In a previous chapter, it was explained that ice rubble is broadly assumed (in the
literature) to be an isotropic, rigid plastic material which obeys the Mohr-Coulomb yield
criterion. Consequently, the shear strength is said to arise from independent frictional and

cohesive components. Friction in a granular material arises from interlock, block strength
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and surface friction. The conditions which influence friction behaviour include packing
density, block shape, size, and gradation, surface roughness, the presence of surface
water, particle composition and particle strength. Cohesion in a bulk ice rubble sample
was shown to be a function of the freeze-bonding propensity of the ice and would,
therefore, be dependent upon heat transfer, block scale, contact pressure, ice impurities,

shearing rate, interstitial fluid and other factors.

As pointed out in section 3.3 it appears that the fundamental Mohr-Coulomb plasticity
assumption stated above oversimplifies the true nature of ice rubble (Ettema and Urroz-
Aguirre, 1991). Due to the apparent stress dependency of ¢ and ¢ terms, and for
completeness in the dimensional analysis, both are grouped here with all other

explanatory variables for the broadest possible analysis.

The hypothesis tested in the dimensional analysis is
¢c=fL,L,1 S, eV, v, 0, 0.) (40)

with terms defined as follows:

. block size, median of maximum dimension L,, and minimum dimension L;,
» duration, ¢, of contact between blocks within the bulk sample,

. interstitial water impurity content (salinity mostly), S,

° porosity of bulk sample, e,

. shear speed, V,

. rubble buoyant weight, v,

° ice block flexural strength, 0

° and maximum confinement stress, o,,,.
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The preceding list was developed after consideration of the various reporting methods
and experimental procedures in the literature. Not all of the factors expected to assert
some influence can be included in this listing. For instance, temperature and particle
grading are omitted due to the absence of reported information. However, while contact
duration, ¢, was poorly reported it does appear in the analysis to ensure that one other
significant variable, in addition to velocity, which involves time is included. Its value is

set to unity for all data sets as a default value.

Flexural strength was selected (instead of another ice strength index) primarily because
it was the most commonly reported ice strength parameter in the literature for rubble
shear strength. It may be argued that for platy blocks, failure in flexure will occur at
lower stresses than pure crushing or tension in an interlocked matrix of blocks being
sheared. Under these circumstances flexural strength may be the better choice since it
would be closely tied to any threshold for non-linear shear behaviour. Regardless,
flexural strength would be significantly related to the other strength indices - thus a
regression equation with either strength index would probably have the same parametric

significance(s) but possess different coefficients of proportionality.

Figure 4.5 shows the workings of the matrix technique for dimensional analysis. This
technique (described in Sharp er al., 1992) enables the systematic evaluation of many II
parameters objectively and completely even when large numbers of variables are

involved. The dimensionless groups ultimately chosen using this process are as follows:
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These are selected because of their physical significance and prior use in the literature.
Sensitivity runs confirm the validity of this selection, in particular, the use of flexural
strength as a repeating variable for normalization. Both ¢,,,, and yL, were substituted for
flexural strength resulting in dimensionless parameters which ultimately yielded poorer

correlations than those listed above.

4.2.2 Analysis data set

The values of explanatory variables from all the sources used in the study are listed in
Table 4.1. Friction angle and cohesion are usually stated in each literature reference,
only a few values are computed here from plotted data. Ordinarily, block size is given,
though dimensions are often approximate. The "maximum" block size described by most
researchers is typically the average or median of the longest dimension of blocks and not
the largest block in the bulk sample. Block thickness (median of minimum block
dimension, L;) and median of the maximum block dimension, L., are used independently
in this study since it is uncertain which is more important, and the ratio of the two gives
an indication of particle shape. The rate of shearing is reported quantitatively in all but
one reference. Keinonen and Nyman (1978) use the relative term, "slowly by hand"
which is estimated here to be around 25 mm/sec. Some references do not cite a flexural
strength for the ice used in tests. Where this is the case values are estimated based on
the description of the ice. For instance, freshwater ice near 0° C is assigned a flexural

strength of 1 MPa after work by Gow (1977).

The salinity of the fluid in which the rubble is immersed is known to significantly affect
ice rubble freeze-bonding (Schaefer and Ettema, 1986). Outside of a laboratory one

would expect salinity and flexural strength to be too closely correlated to be considered
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independent for multiple regression purposes. However, in the lab flexural strength is
controlled to a large extent by the air content of the ice. Bubble layering and spraying
are two techniques used to enhance the void ratio of ice allowing flexural strength
scaling. Some laboratories use chemical dopants such as urea and EG/AD/S as a
substitute for salts. A control experiment has not been done to investigate the effects of
these dopants on the freeze-bonding of ice blocks. It is assumed here that the influences
of all dopants (salts included) is proportional to the percent weight of the impurity in the
water. Experiments in freshwater are assigned an arbitrary impurity of 0.001% since a
value of zero prohibits some transformations of variables (logs, square roots, inverses

etc.) and is unlikely in any event.

All but two researchers report values of bulk sample porosity. Since porosity is difficult
to measure, especially when ice blocks have a lower density out of water when pores
drain, the quoted values are usually approximate. Neither Hellmann (1984) or Case
(1991) give estimates of bulk porosity so bulk porosity values for those references have
been estimated. Since there does not appear to be an obvious relation between porosity
and block size, Hellmann’s rubble samples are considered here to possess average
porosity (35%) as no unusual packing procedures are mentioned. Case (1991) used ice
rubble similar to that reported in Section 3.5 (from Bruneau et al., 1996) and so the
same value is adopted (30 %). The buoyant weight of the rubble sample is computed from
bulk porosity, and, ice and water density. Though seemingly correlated, porosity and
weight parameters are carried through the dimensional analysis separately and into the

regression study, where spurious correlations can be dealt with systematically.

Most rubble shear experiments in the lab involve direct shear devices which produce a




148
horizontal or vertical failure surface in an ice rubble sample. Where external forces are
applied to provide a variation in the normal pressure, stresses from rubble weight or
buoyancy are relatively small. Ettema and Urroz-Aquirre (1991) argue that some
researchers with vertical direct shear apparati have neglected this buoyant stress which
gives rise to a cohesive intercept that should not be there. They suggest that the

horizontal confining pressure on a vertical shear plane is

o, < Kp o, (42)

where the g, is the rubble (buoyant) hydrostatic pressure, o, is the horizontal component
of this pressure during shearing and K, is the Rankine passive pressure coefficient. This
assertion implies that during shearing the vertical pressure increases by a factor of K,
In direct shear tests with soil the vertical pressure is not considered to do this as K, and
K, are not coefficients for pressures on failure planes. For the experiments by Prodanovic
(1979), Weiss et al. (1981), and Hellmann (1984) as cited in Ettema and Urroz (1989)
the normal stress was either regulated at a constant value or measured throughout so as
to provide instantaneous coincident shear and normal stress values. Other than the platen
used to apply the normal stress only friction on the walls of the shear boxes can provide
reaction forces adding to normal stresses on the failure plane. Based on shear box
dimensions and construction it is unlikely that any significant stress on the failure plane
was not measured as a normal stress. Both Prodanovic and Weiss et al. report shear
experiments at a confining stress of zero. This is also unlikely, suggesting that either the
original static pressure may have been zeroed out of the readings or confinement may

have been very low so that it was rounded off to zero. Potentially, the ice rubble may

have become self-supporting due to freeze-bonding (cohesion) after being placed in the
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shear box so that any relief in the box would relieve measured confinement pressure.

For those shear box tests where the failure planes are vertical the reported normal
stresses are used here for all but the zero stress data points. A normal stress value
equivalent to one-half the average vertical (0.5 ¢,) is used since the rubble would have
to have been confined at least that much in the placement process. Where failure planes
are horfzontal, normal stress values are elevated here by an amount equivalent to the
hydrostatic pressure if it does not appear to have been included. The o, values in Table
4.1 represent the highest normal stress used in each reference in which ¢ and c are

computed.

4.2.3 Regression analysis

Multiple regression techniques have been used to synthesize formulas representing the
relationship between ¢, ¢ and the other explanatory variables listed in Table 4.1. Details
of the techniques used are described in Lye (1995). The quality of the fitted formulae
was determined by analyzing the residuals for patterns and outliers. Variables were
transformed when residual plots appeared skewed - indicating that not all data trends
have been identified. Most often the natural logarithms of data were used when residuals
were heteroscedastic (the spead of residuals increases with the independent variable). Few
trends other than convergence and divergence of residuals were encountered. The most
pervasive problem with all data sets was multicollinearity or the undesirable condition
where at least one explanatory variable is closely related to one or more other
explanatory variables. When explanatory variables are significantly correlated, parameter

importance and regression formulas are usually distorted and erroneous.
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The Minitab software employed in this regression study is capable of flagging highly
correlated explanatory variables so some multicollinearity problems were avoided this
way. Variable inflation factors which indicate the multi-variable correlation of each
explanatory variable against all others were computed also. Threshold acceptability values
(from Lye, 1995) were used to accept or reject some variables for various tests. Matrix
plots of scatter diagrams and tables of simple regression results were also employed to
screen explanatory variable correlations. Also, "forwards" and "backwards" stepwise
regression techniques which indicate a type of "regression repeatability” were employed
to guard against multicollinearity and to register the best r* value, adjusted for the

number of explanatory variables (degrees of freedom) in use.

The adjusted r? value indicates the percentage of the variation in the dependent variable
described by the given formula. The partial F test, or t test, was used to determine the
benefit of any one variable to the overall equation. Registering [t| > 2.0 (or p < 0.05)
indicates a significantly non-zero influence at the 95% confidence level, (p representing
the actual probability of not meeting this criterion). Thus [t| = 2 was the threshold for
accepting or rejecting a given variable. Since t values are often highly sensitive to the
subtraction or addition of any variable, many combinations of variables were tested to

determine those which avoided multi-collinearity and were significant.

General relationships

The linear correlation coefficients for all pairs of variables are listed in Table 4.2 for
dimensional and Table 4.3 for non-dimensional terms. At a glance one can see that
significant correlations of variables exist (shaded regions) for the data set in general.

Even speed, a seemingly independent parameter, is correlated to other control parameters
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in the laboratory. Many correlations can be explained by the habits of experimentalists.
For instance, larger labs produce larger ridges with larger blocks at higher confinement.
There may or may not be similar trends in the field. This type of correlation should be
avoided in the laboratory and must be avoided in multiple regression analysis.
Correlations between non-dimensional terms in Table 4.3 are even more difficult to

understand and so are best avoided completely.

Cohesion

The relation between apparent cohesion and several explanatory variables was
investigated. Both dimensional and non-dimensional forms of cohesion were studied. The
analysis was carried out with, and without, ¢ in the list of explanatory variables. All
formulas yielding a spreading trend in the residuals were transformed using natural logs

and a variety of exponents, where applicable.

The formulas yielding the best-fit, with normalized residuals and with the lowest
likelihood of multicollinearity (or correlation error) are listed in Table 4.4. Many other
combinations of variables were explored, frequently yielding r* values much higher than
those listed. However, where explanatory variables are strongly related to each other (as

the shaded areas of Table 4.2 and Table 4.3 indicate), only one may be considered.

Figure 4.6 is a plot of the best-fit formulation for the relationship between cohesion and
maximum normal stress, both normalized by flexural strength. With an r* value of 78.3%
this dimensionless equation may be suitable for scaling. Cohesion is strongly correlated

to block size in this study. Figure 4.7 indicates the best single variable relationship for

cohesion (in Pascals) as
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¢ = 16240L, - 7 43)

where L, is block thickness (in meters). Apparently, block size is also significantly
proportional to the maximum normal stress (see Table 4.2). Thus the relation between
block size and cohesion may be influenced by the dependency of cohesion on normal
stress or vice versa. Table 4.4 identifies the linear and non-linear relationships between

cohesion and maximum stress - both yielding r* values around 60%.

The regression analysis procedure was repeated with the data sets from Urroz and Ettema
(1987), Bruneau (1994a) and McKenna et al. (1996) removed. There was no attempt to
improve results by doing so. These were selected since apparatus and test procedures
differed from the rectangular, direct shear devices of the others. Comparing these
sensitivity results to the earlier results (both in Table 4.4) shows that moderate increases
in r* were identified for cohesion, which in the sensitivity study is surprisingly well-
defined by block thickness and shear speed (Figure 4.8). The inverse relationship
between cohesion and speed may be evidence that cohesive bonds may form relatively

fast and that bond strength may be strain-rate dependent.

Internal friction angle

Regression equations resulting from the study of ¢ vs dimensional and non-dimensional
parameters are also listed in Table 4.4. Transformation of variables was not required in
this case as residuals were normally distributed with linear regression. As Table 4.4
shows the angle of internal friction is influenced by variations in porosity and block size.

Figure 4.9 is a scatter plot of the individual relationships and Figure 4.10 is a quality-of-

fit diagram for the relation:
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¢ = (1.22 - 168L, + 1.37¢) = 0 (44)

where ¢ is the internal friction angle in degrees, L, is the block thickness in meters and
e is bulk porosity in percent. Both Figures 4.10 and 4.11 demonstrate the apparent
weakness of the correlation. The multi-collinearity of maximum normal stress, block
size, weight etc. as highlighted in Table 4.2 limited the combinations of parameters
possible in the study. Typically around 50% of the variation of ¢ can be explained by
one or two explanatory variables. The percentage is higher in the sensitivity run where
the elimination of some data sets yields an r* of 67.2% for the relation involving

cohesion and porosity.

Comments

Apparently, cohesion scales linearly with block thickness, the robust relationship
established accounts for around 70% of the variation in ¢. Taking into account the
sensitivity runs, cohesion can be roughly approximated in kPa by 17L;, where L, is the
block thickness in meters. The dimensionless ratio ¢/oy is highly correlated to O 9 (1

of 78%) and may be a good choice for scaling cohesion estimates.

Approximately 40% of the scatter in ¢ cannot be accounted for through regression
analysis, though porosity appears to be a predominantly significant explanatory variable.
Evidently an inverse relation exists between ¢ and c¢ (Table 4.4). This is an indication

of a flattening of the Mohr-Coulomb failure envelope at higher mean pressures possibly

resulting from particle degradation and the loss of granular shear behaviour.
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4.2.4 Shear vs normal stress
The data points from which the ¢ and ¢ terms in Table 4.1 were derived have been
collected so that an evaluation of instantaneous shear and normal stress could be made
independent of the reported Mohr-Coulomb failure criteria. This study was prompted by
the apparent dependency of cohesion and friction angle on normal stress demonstrated

in Table 4.2 and Table 4.4.

Figure 4.11 is a plot of shear stress vs normal stress including all data sets used in the
previous study. Several other ice rubble shear tests which have been reported in the
literature have not been included in the figure. The tests by Wong et al. (1987), Sayed
(1987), Eranti et al. (1992), Cornett and Timco (1996) and others either saw a monotonic
increase in shear stress with no specific failure point, involved experiments with dry ice
rubble, or were not fully reported. In Figure 4.12 data from Lehmus and Karna (1995)
and Cheng and Tatinclaux (1977) have been added to the data from Figure 4.11. From
both Figures 4.11 and 4.12 it appears that a lower boundary shear strength exists that it
is slightly concave/parabolic. The upper boundary of data appears to be defined by some
radical outliers from the data sets of Lehmus and Karna (1995) and also Bruneau (1994a)
who were studying consolidation effects, as well as Cheng and Tatinclaux (1977) where
there was no attempt to control or measure normal stress (estimated here from rubble
depth), and by Weiss et al. (1981) who used the largest apparatus and ice blocks. From
Figure 4.13 where data is grouped according to ice temperature, speed and contact period

it appears that the upper bound may be a feature of cold ice or extended contact.

Since many properties of ice, including strength, vary according to the salinity of the

solution in which it is formed it was of interest to discriminate between tests using either
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saline, fresh or doped ice. Figure 4.14 provides no particular insights, however, as data

for all three types of ice are scattered somewhat evenly.

A dimensional analysis was performed in which the terms for shear and normal stresses,
r and o, were substituted for ¢, ¢ and o,,. Figure 4.15 indicates the matrix
methodology used to formulate dimensionless ratios. Normal stress was selected as a
repeating variable instead of flexural strength allowing the dimensionless ratio between

shear and normal stress to arise. The derived expression is:

Lonpfle S B o, @)
g, crﬂ’ o, L;, L,

Again, multiple regression techniques have been used to synthesize formulas representing
the relationship between 7 and those explanatory variables as they appear in
dimensionless groups above. The base data set used in this study is limited to those for
which values of ¢ and ¢ were known in Table 4.1. This means that Lehmus and Karna
(1995), and, Cheng and Tatinclaux (1977) were not included. A sensitivity study was
carried out later in which these tests were included. The table listing all data point values

appears in Appendix A.

Linear regression results for dimensional and non-dimensional terms are tabulated in
Table 4.5 and Table 4.6 respectively. For very large data sets the t test of significance
is not meaningful so only r* (adjusted) has been used as a guide for simple correlation

and variance inflation factors were once again used to avoid multi-collinearity.

Table 4.7 lists the multiple regression results. Linear and non-linear relations between
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7 and o, were determined. The distributions of residuals were typically log-normal
indicating that a power-law relation for the combined data set was more appropriate than

a linear fit. The best power-law fit relationship for shear stress was determined as:

- (U")o.a?s (e)u.ss (46)

(o)™
with an r* of 80% where all stresses are in Pascals and porosity, e, is in percent.
Including Lehmus and Karna (1995), and, Cheng and Tatinclaux (1977) considerably
worsened the correlation. Eliminating the "non-standard" direct shear data sets (Urroz
and Ettema, 1987, Bruneau, 1994a, and McKenna et al., 1996) did not improve the
relation either. Figure 4.16 is a plot of the base data set with the best linear and non-
linear single variable correlations shown. The approximate strength of solid ice and loose
sand are also plotted as a reference for relative strength. The range of maximum normal
stress typical for ridges between 5 and 20 m deep is also plotted so that one may quickly
recognise the region of the graph which is of the greatest practical importance for keel

modelling.

The best linear fit for ice rubble shear strength yields a friction angle of 31° which is
approximately equivalent to that of loose sand. It is conceivable that, in a virtually
cohesionless state and with favourable grading and particle size, ice rubble behaves as
any other blocky granular material. Invariably though, bonding takes place, the degree
to which depends on a great many factors. The average appears to be around 590 Pa
(from the linear fit on Table 4.7), however, in the figure one can see cohesion up to 5
kPa was observed in the laboratory and may conceivably reach many times higher

according to the degree of consolidation (potentially approaching that of solid ice). The
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degree of variation is somewhat masked by the logarithmic representation. A band which
covers the main swath of the data points is approximately half an order of magnitude in
thickness. Overall, the plot of shear vs normal stress in Figure 4.16 illustrates that ice

rubble shear strength is strongly related to normal stress but, is also highly variable.

The significant portion of scatter left unexplained by the preceding analysis underscores
the sensitivity of ice rubble shear strength to parameters not reported, differing
experimental techniques and natural variability. Measurement error is probably
responsible for as much as 10 to 20% of the scatter. As described earlier some of the
data used in the analysis was inferred or estimated. This may also have contributed to

scatter.

4.2.5 Sensitivity study and comparison to full-scale

The empirical formulas for ¢, ¢ and 7 (Equations 43, 44 and 46) described earlier in this
section have been evaluated in a sensitivity study shown in Figure 4.17. Two approaches
to calculating rubble shear strength are considered. The "phi-c" approach refers to the
use of Mohr-Coulomb criteria (¢ and ¢ from equations 44 and 43), and the "tau"
approach which refers to the fundamental shear (7) vs normal stress relationship (equation
46). The values of explanatory variables selected in the table accompanying the figure
are representative of those of a design ridge in temperate climatic zones. The sensitivity
study focusses on the relative effect of porosity, block thickness and keel depth as well
as comparing the computed shear strength from both approaches. The average shear
strength is assumed here to be that at 2H/3 from the keel bottom, according to a linear
hydrostatic approximation. The horizontal bar graph shows that the "tau" model generally

produces higher shear strength estimates than the "phi-c" approach. It is also more
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sensitive to keel depth, less sensitive to porosity and does not vary with block thickness.
For the "phi-c" approach the extrapolation of laboratory results to the field has

apparently resulted in remarkably low estimates of friction angle.

A comparison of computed and measured full-scale rubble shear strengths is reviewed
in Figure 4.18. Computed values are compared here with those of Lepparanta and Hakala
(1992). In that study the investigators performed a detailed study of ridge keel geometry
and composition. Five ridge keels were "punch-sheared” vertically with a 2 m square
loading platform to obtain shear resistance. Loads were applied using pumped water,
concrete block placement and a hydraulic ram. The first technique failed due to the
cumbersome handling of the volume of water required. The second was found to be
effective for small and medium ridge keels but again became too difficult to handle for
larger ridges. The last technique showed the most promise for larger keels though limited

stroke and hydraulic pressure prevented complete ridge keel failure.

In the successful punch tests failure planes were vertical and shear resistance measured
from 1.7 to 4+ kPa for keels ranging in depth from 2.3 to 11.7 m. Loading period
averaged about 2 hours and displaced the keels less than 0.1 m on average which
translates to less than 1 mm per minute. This very slow rate is not representative of the
conditions under which the highest failure loads are expected to occur. None-the-less,
Lepparanta and Hakala claim that the field results have been backed by both shear box
and square punch tests performed in the laboratory. The shear strength in the laboratory
was said to vary from 0.9 to 2.6 kPa with a mean friction angle of 8.4 degrees. These

results are somewhat puzzling since a calculation based upon information given shows

that normal stress varied by as much as 0.34 to 1.5 kPa and shear stress varied from 0.9
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to 2.6 kPa. This would suggest a friction angle much higher than that stated.

Figure 4.17 indicates that the "phi-c" computed shear strength provides a closer estimate
of the full-scale data than the alternate "tau" appraoch. The average errors of the
estimates were 17% and 33% respectively. The near match for experiment No. 6 is
problematic for the "phi-c" approach, however, since the ultimate shear strength of the
ridge was not achieved and may not have been approached in that test. In this case the

estimate based on the empirical = formula may be better.

Lavender (1973) also proposed a full-scale cohesion for ice rubble from river ice jams.
The technique used for his estimate of 0 to 3800 Pa is not published and conditions are
not known. Regardless, the upper bound is certainly of the same order as that in Figures

4.17 and 4.18.

Hudson (1983) describes full-scale observations of extruded first-year ice ridges in the
arctic. Ridge extrusion is described as a phenomenon which occurs when there is a high
speed collision between flows or ridges and stationary structures. The formation which
develops resembles a deflected ocean wave "frozen" in time. The impression of intense
pressures and considerable shearing within the rubble body is given. The extruded crests
are somewhat circular in shape implying a "virtually cohesionless” material, according

to Hudson.

Hudson points out that a 2 m thick ice sheet produces the same size ice rubble as a 5 m

thick sheet which suggests that first-year ridge cohesion may reach some asymptotic limit

that could be in the range of 25 to 35 kPa for severe arctic first-year ridges. These
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estimates are highly consistent with the block size relation for cohesion here.

At present, the limited data from the field appear to support the prediction of ice rubble
shear strength using Mohr-Coulomb failure criteria obtained in the laboratory.
Considerable caution should be exercised in doing so, however. As was mentioned in
Chapter 2, first-year ridge keel rubble, over long contact periods, may undergo many
changes via erosion, freezing, creep, brine transport, melting etc..These processes have
not been, and cannot be, adequately modelled in the laboratory so that the range of
reported shear strengths may not be fully representative of field conditions. To provide
reliable parametric input for ridge keel models it is imperative that efforts be placed in

field studies, through methods such as the in situ direct shear technique suggested in

Section 3.5.
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Table 4.2 Explanatory variable correlation analysis for ¢ and ¢ terms.

r*2 adjusted for the number of explanatory variables
[t| > 2 = significant
p < 0.05 means significant within 95% confidence limits

Shading represents significant correlation

0 0 2.2 T8 Shear
-0.88 0.37 132 :
03 L o718 Licios
0.078_

Buoyant
weight

Maximum
normal
stress

Tmax

1 r*2 adjusted for the number of explanatory variables
|t| > 2 = significant
p < 0.05 means significant within 95% confidence limits

Shading represents significant correlation
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Table 4.5 Explanatory variable correlation analysis for 7 terms.

2 (adj) > 50%
’ ™2 (adj) > 30%

W ///,C,’ ?%///
720, %

?i,"%;/
v ";

W

Table 4.6 Explanatory variable correlation analysis for 7 terms.

rA2 (adj) > 50%
"2 (ad)) > 30%
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Cohesion vs maximum normal stress
Non-dimensionalized by flexural strength
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Figure 4.6 Normalized cohesion best-fit regression result.
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Figure 4.7 Cohesion vs block thickness regression results.
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Figure 4.8 Cohesion sensitivity study regression results.
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Figure 4.9 Friction angle vs porosity and block thickness.
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Figure 4.10 Friction angle best-fit regression result.
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100000 Shear vs normal stress
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Figure 4.11 Laboratory ice rubble shear vs normal stress data - by author.
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Figure 4.12 Laboratory ice rubble shear vs normal stress data with extreme data.
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100000 Shear vs normal stress
Laboratory ice rubble
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Figure 4.13 Ice rubble shear sensitivity study - temperature, duration and speed.
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Figure 4.14 Ice rubble shear sensitivity study - ice type.
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Shear vs normal stress
Laboratory ice rubble - regression study
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Figure 4.16 Laboratory ice rubble regression results summarized.
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Quantity Units | Defeult | Porosity Block size

values | | deep shallow
Porosity % 35 35 35
Max. block size m 1 1 {9
Min. block size m 0.2 0.2 02 .. ["0:2
Flexural strength Pa | 300000 | 300000
Keel depth m. . ; 15 15
Block density Kg/m*3| 900 900 | 900 | 900 900 900 | 900
Water density | Kg/mA3 | 1025 1025 | 1025 1025 | 1025 1025 | 10251
‘Buoy. weight | N/m”3 797 674 920 797 797 797 797
Av. vert. stress (2H/3) Pa 7971 | 6744 9197 7971 7971 10628 5314
Max. vert. stress (H) Pa | 11956 10117 13795 11956 | 11956 15941 | 7971
COMPUTED e = .
Cohesion Pa 3241 | 3241 3241 4866 | 2429 3241 3241
Friction angle Deg 161 . 29 2 0 | 24 16 16
Phi-c - av. horiz. shear Pa 5462 7022 3542 4866 5973 6203 4722
Phi-c - max. horiz. shear | Pa 6573 8912 | 3692 4866 | 7745 7683 5462
Tau -av. horiz.shear | Pa | 6436 6382 | 6065 6436 | 6436 8286 4509
Tau - max. horiz. shear | Pa 9189 9111 | 8659 9189 | 9189 11829 | 6436

Computed shear strength
Sensitivity analysis

Shear strength (Pa)

Thousands
0 2 4 6 8 10
. --._]
Default
High porasity M Phi-c computed shear
bt B Tau computed shear
Low porosity
Thicker blocks [l
Thinner blocks
Deep keel P
Shallow keel

Figure 4.17 Computed ice rubble shear strength - sensitivity study.




Quantity Units |Lepparanta and Hakala (1992)

2 3* 4 5 6"
|Porosity % 23 28 32 33 28
Max. block size m 0.75 0.6 0.7
|Min. block size m 0.2 0.2 0.11 0.1 0.23
[Flexural strength Pa 300000 300000 | 300000 | 300000 | 300000
Keel depth m 3.3 3.6 3.9 3.8 1.7
Block density Kg/m"3] 880 880 880 880 880
Water density Kg/m*3] 1025 1025 1025 1025 1025
‘Buoy. weight N/mA3] 1095 1024 967 953 1024
Av. vert. stress (2H/3) Pa 2410 2458 2515 2414 7988
‘Max. vert. stress (H) Pa 3614 3687 3772 3622 11983
COMPUTED
'Cohesion Pa 3241 3241 1780 1617 3729
[Friction angle Deg -1 6 27 30 1
Phi-c - av. horiz. shear [ Pa 3205 3499 3038 2990 3860
‘Tau - av. horiz. shear Pa 1787 2027 2225 2184 5704
|MEASURED (from ref.)
|Av. shear strength | Pa
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* Failure did not occur therefore stated shear strength is lower bound

Computed vs measured full-scale shear strength

T Y Y P TP YTy ST STy aawess
1 Measured

B Phi-c computed shear j——— —
B Tau computed shear

Shear strength (Pa)
Thousands

2 3" 4 5 6"
Lepparanta and Hakala (1992) Experiment No.

R Comparison of computation techniques
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2

286 o

% s a1 e Phi-c computed shear: av. error = 17%

2 3 ° o o Tau computed shear: av. error = 33%
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RIS . . : Averages:

£ 0 2 4 6 8 Measured = 2980 Pa

< Thousands ?hi-(i:z?ggop:a
Measured shear strength (Pa) i

Figure 4.18 Computed ice rubble shear strength - full-scale study. |
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4.3 Ridge/structure interaction forces

Physical modelling of the interaction between vertical structures and ice rubble has been
carried out as part of the work included in this thesis (Bruneau, 1994a, McKenna et al.,
1995b, and McKenna, 1996). The purpose has been to establish a basis for load model
development. The results of similar work in the literature as reviewed in Section 2.3
have been combined in a regression study in this section. This attempts to determine the
correlation between control variables and their relevance to forces measured in laboratory
ice rubble/structure interactions. The results provide an empirical basis for theoretical

load model development and aid in the systematic scaling of forces.

4.3.1 Dimensional analysis

A dimensional analysis was performed using the "matrix technique" (Sharp et al., 1992)
as described earlier. Parameters were selected based on their appearance in existing load
models (as reviewed in Section 2.4) and the empirical relations seen in the data reported

in Chapter 3. The hypothesis tested in the dimensional analysis was

F=fiD,H W, ¢ c v V) @7

with terms defined as follows:

¥ structure diameter or width, D,

° maximum depth of rubble interacting with structure, H,

o the width of the rubble accumulation, W, (in path of structure)
® ice rubble shear strength, ¢ and c,

° rubble buoyant weight, -y, and

o interaction speed, V.

The shear strength failure criteria are assumed to capture the effect of parameters such
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as block size and porosity.

The following dimensionless ratios were formed as shown in Figure 4.19 (with some
rearrangements):

W H W (48)

F c
f ¢9“b‘! 5:?‘

vyH?D ~H’
The last three terms are not mutually independent so that only (any) two of three are of

practical importance in a given study.

An alternate approach (Figure 4.20) aimed at involving speed in the dimensionless terms

yielded

Bl fai thris i, s 82 (49)
H*V? P D’ D HW W

where g is the gravitational constant, A is ridge cross-sectional area, and p is rubble bulk

density.

4.3.3 Analysis data set

Table 4.8 is a summary of laboratory ridge/structure interaction data sets. The boundary
conditions varied between two-dimensional (wall-to-wall) and three-dimensional (isolated
cylinder) indentation, and, from interactions with continuous rubble (modelling a rubble
field) to discrete rubble accumulations (modelling a ridge). Also, experiments varied
from unconfined (no core present) to confined (with core) horizontal surfaces at the
waterline. Cheng and Tatinclaux (1977) did not determine a friction angle for the rubble

they used but Mellor (1980) suggested that it was around 46° with very low cohesion
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(essentially zero) arbitrarily selected here as 1 Pa. The experiments by Hellmann (1984)
involved ploughing a circular vertical plate through rubble under the surface. The
boundary condition in this case has been categorized as non-confined although it differs
somewhat from those experiments in which structures extend up and out of the water.
All experimental results which provide the database for the regression studies reported

here are tabulated in Appendix B.

Six scatter plots in Figure 4.21 illustrate the dependency of peak interaction force on the
key explanatory variables. A measurement of shear strength is obviously not sufficient
for a prediction of interaction forces. There is considerable scatter in the data particularly
in the plot of force vs speed, ridge width, rubble buoyant weight and shear strength.

It may be possible to argue from these data for a dependency of force on structure
diameter, and ridge width but the clearest correlation is a power-law dependency of force
on rubble depth. The upward curvature is distinct even without normalization of the other
factors. It is important to emphasize that these plots do not isolate the effects of single

variables so that no correlations were ruled out prior to the regression study.

4.3.4 Regression study

Multiple regression techniques have been used to synthesize formulas representing the
relationship between measured force and the explanatory variables described above. Two
groups of dimensionless ratios were investigated for best-fit. The quality of the fitted
formulae were determined by the same methods used in the study of ice rubble shear in

Section 4.2. Matrix plots and variance inflation factors were used to identify and avoid

spurious correlations and multicollinearity problems.
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All data sets were grouped for the initial analysis. In the second trial two data sets
(Timco and Cornett, 1995, and Bruneau, 1994a "dry tests") were removed. In Timco and
Cornett (1995), uncertainty surrounds the non-direct measurement of rubble forces and
in Bruneau (1994a) "dry" ice rubble was not submerged. Furthermore neither program
had a specified shear strength for ice rubble (in the state tested). In the third trial only
those experiments associated with this thesis and reviewed in Chapter 3 were included
(Bruneau, 1994a "wet", McKenna et al., 1995a and b, and McKenna, 1996). These tests
also correspond to the only data sets which involved discrete ridges for which ridge width

and sectional area were reported.

Dummy variables, as suggested by Draper and Smith (1966), were used to quantify the
influence of boundary conditions. The three boundary conditions which were identified
for this study are, as described above (Subsection 4.3.3): the longitudinal extent or width
of the rubble, the lateral extent of the structure and the degree of rubble confinement at

the waterline.

Results

A qualitative regression study of the laboratory ridge/structure interaction boundary
conditions indicated that only the confinement of the rubble at the waterline significantly
affected loads. Neither rubble width nor structure extent were significant factors in
measured loads. This result comes as some surprise since the boundary condition which
receives the least attention in load models (confinement at the waterline) is the only one
of importance in the lab. Results here must be viewed cautiously, however, since the

boundary conditions are closely correlated to other laboratory conditions which may also

be influential.




179
Correlation analyses results for all explanatory variables and for each of the three data
set groupings are listed in Tables 4.9 to 4.11. Force formulations from the regression
analysis are summarized in Table 4.12. Included are the best-fit formulas for both
dimensional and non-dimensional explanatory variables. Results which were near best-fit
but involved fewer or alternate variables are also given. Both linear and power law best-

fit formulas are given with and without intercepts for all three data set groupings.

All data sets

Single variable linear regression results listed in Table 4.9 indicate that force is
predominantly influenced by rubble depth and structure diameter. These terms are key
elements in "earth pressure” force formulas, 0.5yH’D, and so this was the form
(including the 0.5 coefficient) of the normalizing term exploited for subsequent regression

tests.

Table 4.12 lists the most significant multi-variable regression results. Although velocity
shows up as a significant variable in the first formulation in Table 4.12 it appears later
to have an opposite effect (with a different data set). This conflicting result indicates that
the significant correlations with velocity are probably arbitrary and coincidental. For
most multi-variable regression trials involving dimensional variables those terms
associated with hydrostatic "earth pressure" force were again dominant. The term,
0.5yH’D is the most significant and often the only significant parameter in the regression
equations for ridge indentation force. The dependency of indentation force on this term
is demonstrated in Figure 4.22 where all data sets are identified by author. The best-fit

linear and non-linear formulations invloving only this term are shown in Figure 4.23.

According to linear regression results, 93% of the variation in interaction force can be
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explained by the following:

T TLIS T’fD + 150 (50)

The power law relation for the same data set resulted in a 55.7% r?. The residuals for
both are not normally distributed and so the r* values are skewed. The plotted results in
Figure 4.23 clarify this problem by showing the deviations of both curves from the data
points. When the intercept is fixed at zero (for which an r? value cannot be interpreted)

the apparent fit is better, particularly with the larger scale tests. The formula becomes

F-12 “f_f? (51)

All data sets minus Timco and Cornett (1995) and Bruneau (1994a) "dry”

The data set was reduced in size by eliminating the data from Bruneau (1994a) "dry" and
Timco and Cornett (1995). Table 4.10 indicates that force is significantly correlated to
depth, diameter and internal friction angle. However, ¢ is also correlated to depth and
diameter and therefore cannot appear with them as a control term in a multi-variable
regression analysis. Regression results indicated an improved linear fit over the previous

result, With an r* = 96% the following formula was determined:

F - 11.6 + 103 (52)

vH*D
2

The skewness of the residuals for both the transformed power law and linear formulas
was diminished somewhat from the previous trial. Plotted results in Figure 4.24 again

indicate that the best-fit for the larger scale experiments was a zero-intercept formula

with a proportionality coefficient of 12.
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Chapter 3 data only (Bruneau, 1994a, McKenna et al., 1995a and b, and
McKenna, 1996)
The third regression study was performed on those data sets which involved the
indentation of discrete piles of rubble, not continuous rubble fields. Data sets were
limited to those reviewed in Chapter 3. Table 4.11 indicates the single variable
relationships for this data set and is a guide for avoiding multi-collinearity. Both linear
and power-law fits resulted in r* values better than 95 %. The linear relation established
was

Fie T8 'YffD - 5% (53)

and is shown in Figure 4.25. Again the zero intercept relationship was identical to that
for other data sets with a coefficient of 12. Essentially the data sets in this last grouping
are directly proportional to hydrostatic earth pressure and form a boundary above which

all the other data sets, with quite different boundary conditions, were scattered.

Despite expectations that the width and shear strength of ice rubble accumulations were
important factors in determining loads on structures in the lab, regression results indicate
otherwise. The non-significant correlations in the multi-variable analysis for these
parameters are qualified, however. The close correlation between shear strength and
normal stress (a function of rubble buoyant weight and depth) has made the rubble
strength terms inseparable from the 0.5yH’D term. Also, ridge width has a non-zero
correlation to depth and so is also inseparable. The robust linear relationship between
measured force and 0.5yH’D with the coefficient of around 12 simply cannot be further

reduced or broken down to include other explanatory variables because of these and other
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parametric correlations.

4.3.5 Conclusions

In this section a review of experimental results has elucidated the form of fundamental
equations describing ridge keel failure forces on vertical structures. Though known, the
values of the proportionality coefficients remain somewhat unexplained. The correlation
between some of the important experimental conditions has made explaining them
difficult. This is a problem for generalizing and scaling results since factors such as ridge
width, which may be significant in the laboratory but buried in the proportionality

coefficient, may or may not be a significant factor at full-scale.

Motivated by the success of previous "sand keel" tests the next chapter describes a set
of control experiments which attempt to reconcile the regression formulas described here
with physical modelling results. The rationale is that testing with a material for which
shear strength is time-independent and well understood, and with techniques that permit
accurate measurements of key experimental conditions, can provide a definitive data set
for constructing a working keel force model. A model developed from sand tests would
substantially improve existing modelling practices if it could be adapted and calibrated
for ice ridge application and still retain the sensitivites to boundary conditions, keel size

etc. learned with sand.
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r*2 adj > 50%

Table 4.9 Explanatory variable correlation analysis - all data sets. ]
r2 adj > 30% l

Table 4.10 Correlation analysis for all data minus Timco and Cornett (1995), and
Bruneau (1994a) "dry".

|Cohesion (c)

Table 4.11 Correlation analysis of Chapter 3 data sets only.

= r'2 adj > 50%
/) ™2adj>30%

’//7// 5777 “?/ U5
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Figure 4.21 Scatter plots of force versus key variables.
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Structural indentation of ice rubble
All data sets
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Figure 4.22 Ice rubble indentation force vs 1/2yH?D term - by author.
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Figure 4.23 Ice rubble indentation force vs 1/2yH?D term - regression results.
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Structural indentation of ice rubble
Minus Timco and Cornett (1895) and Bruneau (1994a) "dry"
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Figure 4.24 Ice rubble indentation force vs 1/2yH?D term - sensitivity study.
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Figure 4.25 Ice rubble indentation force vs 1/2yH?D term - sensitivity study.
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